
DEFINE.XML - WHAT YOU SEE
ISN’T ALWAYS WHAT YOU GET
Quanticate White Paper

BIOSTATISTICS & DATA EXPERTS

2

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

The define.xml is a great way to transfer metadata be-
tween organisations but like everything it needs to be
andled with care. One of the largest or most common
misconceptions seems to be regarding the define.xml
contents versus the presented view when opened in a
browser with an applied Stylesheet. The “I opened it, it
looks fine and there were no validation findings, so it’s
ok” mentality can miss a lot of genuine issues in the
define.xml. Additionally the CDISC example Stylesheets
are not “THE standard”, but simply a good starting point
that can and should be altered when required, or even
to aid internal review.

Define.xml – Content vs. Presentation

The define.xml is the primary file in a define package and is written in XLM (eXtensible Markup Lan-
guage). XML is machine readable which is great for transferring information however, not always
ideal to present information to humans, particularly those that are non-technical. Try opening the
file up in Notepad/Wordpad or even something that does some basic XML syntax highlighting and
you will be presented with a lot of text, with lots of < > and / symbols everywhere. If you understand
how XML works this isn’t too bad on the face of it, until you then have to start tying up all the links
between elements.
This is where XSL (eXtensible Stylesheet Language) is used as a styling language for XML. An XSL
Stylesheet can be referenced from the define.xml file to allow an XML file to be rendered in a more
user-friendly way. XSLT (XSL Transformation) is a part of the XSL language that specifies the trans-
formations from XML code into other formats (e.g. into HTML).

XML without a Stylesheet: XML with a Stylesheet (XSL):

One of the common misconceptions with the Stylesheet is that there is a CDISC governed one
that must always be used for the define.xml version. However, Stylesheets can be interchanged as
needed by either changing the define.xml to reference a different file, or overwriting the referenced
Stylesheet file.
Throughout the life of CDISC’s define.xml there have been various versions released by CDISC as
part of their packages as shown below.

<Study 0ID=”cdisc01”>
 <GlobalVariables>
 <StudyName>CDISC01</StudyName>
 <StudyDescription>CDISC Test Study</StudyDescription>
 <ProtocolName>CDISC01</ProtocolName>
 </GlobalVariables>
 <MetaDataVersion 0ID=”MDV.CDISC01.SDTMIG.3.1.2.SMTM.1.2”
 Name=”Study CDISC01, Data Definitions”
 Description=”Study CDISC01, Data Definitions”
 def:DefineVersion=”2.0.0”
 def:StandardName=”SDTM-IG”
 def:StandardVersion=”3.1.2”>

 <!-- ******************** -->
 <!-- Supporting Documents -->
 <!-- ******************** -->

SDTM-IG 3.1.2

 Annotated Case Report Form
 Reviewers Guide Complex
 Algorithms
 Tabulation Datasets
 Value Level Metadata
 Controlled Terminology
 Computational Algorithms
 Comments

Dataset Description Class Structure

TA Trial Arms TRIAL DESIGN One record per planned
Element per Arm

TE Trial Elements TRIAL DESIGN One record per planned
Element

TI Trial Inclusion/
Exclusion
Criteria

TRIAL DESIGN One record per I/E
criterion

TS Trial Summary TRIAL DESIGN One record per trial
summary

Tabulation Datasets for Study CDISC01 (SDTM-IG 3.1.2)

3

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

Define.xml v1.0.0 (2005-01-28) released with CRTDDS v1.0.0:
Datasets for Study 1234

This was the first release of a Stylesheet and included a plain look and very limited functionality. Its
purpose was to display the basics of the define.xml v1.0.0 (CRTDDS).

Define.xml v1.0.0 (2005-01-28) released with CRTDDS v1.0.0:

A newer Stylesheet was released with the Metadata Submission Guidelines package, still designed
for define.xml v1.0.0 (CRTTDS), but confusingly called define2-0-0.xsl. This upgraded Stylesheet
gave a more colourful look at the define and included more advanced features. For example the
hyperlinked Table of Contents on the far left bar and hyperlinks to CRF pages (if the syntax was in a
set format). Although a great improvement from the first Stylesheet there were many flaws with the
Stylesheet presentation, it relied on multiple external files outside of just the Stylesheet (XSL file) in-
cluding a Cascading Style Sheet (CSS) and Bitmap (BMP) image files, both for the enhanced presen-
tation. It was also quite incompatible with various versions of Internet Explorer, so multiple updates
had to be done to ensure compatibility with various sponsor machines.

Define.xml v2.0 (2013-04-24), released with define.xml v2.0:

With the release of define.xml v2.0 came a new look Stylesheet that was simpler and clinical in its
appearance, yet contained improved functionality, harnessing the increased machine-readability of
the define.xml v2.0 standard for Origins, Methods, CodeLists, VLM and Comments.

Dataset Description Structure Purpose Keys Location

DM Demographics Special Purpose - One record per event per subject Tabulation STUDYID, USUBJID crt/datasets/1234/dm.xpt

TE Trial Elements Trial Design - One Record Per Element Tabulation STUDYID, ELEMENT crt/datasets/1234/te.xpt

TA Trial Arms Trial Design - One Record Per Element for each Arm Tabulation STUDYID, ARM crt/datasets/1234/ta.xpt

TV Trial Visits One Record Per Visit Per Subject Element Tabulation STUDYID, VISIT crt/datasets/1234/tv.xpt

SE Subject Elements Study Design - One Record Per Subject Element Tabulation STUDYID, ELEMENT crt/datasets/1234/se.xpt

Dataset Description Class Structure Purpose Keys

TA Trial Arms Trial Design One record per planned Element per Arm Tabulation STUDYID, ARMCD, TAETORD

TE Trial Elements Trial Design One record per planned Element Tabulation STUDYID, ETCD

TI Trial Inclusion/Exclusion Criteria Trial Design One recrod per I/E criterion Tabulation STUDYID, IETESTCD

TS Trial Summary Trial Design One record per trial summary parameter value Tabulation STUDYID, TSPARMCD, TSSEQ

TV Trial Visits Trial Design One record per planned Visit per Arm Tabulation STUDYID, VISITNUM, ARMCD

DM Demographics Special Purpose One record per subject Tabulation STUDYID, USUBJID

SDTM-IG 3.1.2

 Annotated Case Report Form
 Reviewers Guide Complex
 Algorithms
 Tabulation Datasets
 Value Level Metadata
 Controlled Terminology
 Computational Algorithms
 Comments

 Annotated Case Report Form

 Reviewers Guide

 Datasets

 Value Level Metadata

 Computational Algorithms

 Controlled Term

Datasets for Study CDISC01

Dataset Description Class Structure Purpose Keys Location

TA Trial Arms TRIAL DESIGN One record per planned Element per Arm Tabulation STUDYID, ARMCD,
TAETORD

ta.xpt

TE Trial Elements TRIAL DESIGN One record per planned Element Tabulation STUDYID, ETCD te.xpt

TI Trial Inclusion/
Exclusion Criteria

TRIAL DESIGN One record per I/E criterion Tabulation STUDYID, IETESTCD ti.xpt

4

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

Define.xml v2.0 (2015-01-16), released with the ARM extension:

With the release of the Analysis Results Metadata (ARM) extension to define.xml v2.0 came another
new Stylesheet. There was no drastic change in appearance aside from the inclusion of tables for
the ARM metadata. Possibly the most otherwise noticeable change was the addition of a preced-
ing table containing the previously hidden, but always available in the define.xml v2.0, metadata
about the Study, as well as information about the define.xml document generation date and the
Stylesheet version used. This Stylesheet can be used on define.xml v2.0 files even without the ARM
component.

And these are just the versions officially released with new define.xml versions or extensions. There
are a number of sub-versions within these with improved or corrected presentation of the XML
metadata. The CDISC Wiki has a link to various versions too. All of this goes to show there is not one,
defined, consistent Stylesheet for define.xml as is often assumed. And even the latest versions con-
tain certain flaws, or contain assumptions that may not be fit for every study.

Assumptions in the Stylesheet

Within each of these Stylesheets there are some assumptions made that may not be needed or
wanted in some circumstances. A few examples are below.

Information that is shown is deemed generally expected by a reviewer but may not suit all needs,
for example should you want to check the metadata then there is plenty of “Hidden” metadata,
e.g. Roles for variables, that you may want your Stylesheet to show. All metadata sent should be
checked or validated in one form or another, even something as mundane as FileOID can be consid-
ered wrong in some circumstance, so no assumptions should be made that just because you can’t
see something, it doesn’t mean it’s not important enough to check.

One of my pet dislikes in the define.xml is how it displays ISO8601 for date and/or time variables (--
DTC, --INT, --DUR). You can search through the define.xml as much as you like often without finding
even a single reference to ISO8601, and yet using some Stylesheets ISO8601 is clearly visible in an
Internet browser view of the define.xml file. This is down to an inference made at the Stylesheet lev-
el that variables with certain DataType values will use ISO8601 and so it displays this in the view.

Dataset Description Class Structure Purpose Keys Location Documentation

TA Trial Arms TRIAL DESIGN One record per planned Element
per Arm

Tabulation STUDYID, ARMCD,
TAETORD

ta.xpt

TE Trial Elements TRIAL DESIGN One record per planned Element Tabulation STUDYID, ETCD te.xpt

TI Trial Inclusion/
Exclusion Criteria

TRIAL DESIGN One record per I/E criterion Tabulation STUDYID, IETESTCD ti.xpt

Standard SDTM-IG 3.1.2
Study Name CDISC01
Study Description CDISC Test Study
Protocol Name CDISC01
Metadata Name Study CDISC, Data Definitions
Metadata Description Study CDISC01, Data Definitions

Date of Define-XML document generation:2013-03-03T17:04:44
Stylesheet version: 2015-01-16

SDTM-IG 3.1.2

 Annotated Case Report Form
 Reviewers Guide Complex
 Algorithms
 Tabulation Datasets
 Value Level Metadata
 Controlled Terminology
 Computational Algorithms
 Comments

Tabulation Datasets for Study CDISC01 (SDTM-IG 3.1.2)

5

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

Some Stylesheets go another step further and actually assume that all variables ending in --DUR
follow ISO8601 standard even if DataType ≠ “durationDatetime”. Now if a dataset followed CDISC
standards properly then there is less of a problem, but there are always projects out there that fol-
low the standards loosely
particularly mapping from legacy data, so this assumption may not always be accurate.
The XML file itself should be stating if something uses ISO8601, doing that through the DataType is
one method, but for the Stylesheet to start assuming based on variables names is, in my opinion, an
overreach of interpretation.

In some earlier versions of the define.xml v2.0 Stylesheet there were some further assumptions
around Value Level Metadata (VLM) that could often make a perfectly valid XML file look odd. This is
particularly apparent in VLM defining QVAL with QNAM in the WhereClause. The assumptions made
are that associated QNAM variables will not have a CodeList, even though a CodeList is optional,
and that the VLM will have a Description attribute, which again is optional, for each VLM on QVAL.
Following these assumptions will give something like the following:

If the Description element is removed then in the output this will remove the contents from the
brackets in the Where column:

Adding a CodeList to QNAM will give another set of brackets which are populated with the decode,
while still retaining the original, now empty, brackets:

Variable Where Type Length/
Display
Format

Controlled Terms or
Format

Origin Derivation/Comment

QVAL QNAM EQ
ARTRTEM
(Treatment
Emergent Flag)

text 1 [“N” = “No” , “U” = “Un-
known” , “Y” = “Yes”]
<No Yes Response Sub-
set>

Derived AETRTEM = “Y” if Adverse Event was not
present prior to the RFSTDTC, or it was
present prior to the RFSTDTC but increased
in severity during the treatment period.
Null Otherwise.

Variable Where Type Length/
Display
Format

Controlled Terms or
Format

Origin Derivation/Comment

QVAL QNAM EQ
ARTRTEM
()

text 1 [“N” = “No” , “U” = “Un-
known” , “Y” = “Yes”]
<No Yes Response Sub-
set>

Derived AETRTEM = “Y” if Adverse Event was not
present prior to the RFSTDTC, or it was
present prior to the RFSTDTC but increased
in severity during the treatment period. Null
Otherwise.

Variable Where Type Length/
Display
Format

Controlled Terms or
Format

Origin Derivation/Comment

QVAL QNAM EQ
ARTRTEM
(Treatment
Emergent Flag)
()

text 1 [“N” = “No” , “U” = “Un-
known” , “Y” = “Yes”]
<No Yes Response Sub-
set>

Derived AETRTEM = “Y” if Adverse Event was not
present prior to the RFSTDTC, or it was
present prior to the RFSTDTC but increased
in severity during the treatment period.
Null Otherwise.

6

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

If you were to leave both the Description as well as giving a CodeList to QNAM you will have both
sets of brackets populated, effectively duplicating the information:

Assumptions like these in the Stylesheet can cause confusion and make it initially look as if the XML
file is incorrect, however in all of the cases above the XML file is valid and simply the presentation is
incorrect.

Adjusting the Stylesheet

Looking at the previous sections in this paper it is clear that sometimes adjustments to the
Stylesheet are needed either for a new use-case, or to correct the presentation of the define.xml.
Even within the latest Stylesheets themselves it is made clear that these are only examples that can
be adjusted and are not “the standard”.

<!-- The CDISC Define-XML Standard does not dictate how a stylesheet should display a Define-XML v2
file. -->

<!-- This example stylesheet can be altered to satisfy alternate visualization needs. -->

So Stylesheets can be adjusted in such a way as long as the
changes are within reason. All such adjustments should
follow good programming and documentation practices.
That is, any adjustments should be documented appro-
priately in the header and ideally any lines that have been
adjusted marked and commented where the change is not
obvious.

So what is within reason? If you wish to present extra
information to the user, adjust the way it is presented
slightly or improve navigation then there shouldn’t be a
problem as long as you do not lose visibility of any contents
along the way.
Adjusting for browser compatibility in older define.xml v1.0
Stylesheets in particular were a common requirement as
sometimes hyperlinks, or links to annotated Case Report
Form (aCRF) pages would not work correctly without such
adjustments. Each study is different and with each new
scenario often comes new visibility requirements that can’t
always be predicted, for example various split domains and/
or split supplemental qualifiers scenarios.

Variable Where Type Length/
Display
Format

Controlled Terms or
Format

Origin Derivation/Comment

QVAL QNAM EQ
ARTRTEM
(Treatment
Emergent Flag)
()

text 1 [“N” = “No” , “U” = “Un-
known” , “Y” = “Yes”]
<No Yes Response Sub-
set>

Derived AETRTEM = “Y” if Adverse Event was not
present prior to the RFSTDTC, or it was
present prior to the RFSTDTC but increased
in severity during the treatment period.
Null Otherwise.

7

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

They can also be adjusted to accommodate extensions to the XML standard, for example the Anal-
ysis Results Metadata (ARM) Stylesheet that was released by CDISC. If you apply this Stylesheet to
datasets even without the ARM component used this newer Stylesheet still gives some improved
visualization including a table at the very beginning for the Study metadata that wasn’t previously
shown in the earlier define.xml v2.0 Stylesheet.

You can also make or adjust your own Stylesheets for internal purposes like helping manual quality
review or XML debugging where you may wish to see more of the metadata than is typically shown.

There are many valid reasons to adjust the Stylesheet, but there are as many bad reasons. Partic-
ularly if you intend to submit the define.xml with an updated Stylesheet you should not “correct”
the Stylesheet display to deal with incorrect XML code, or hide information that is useful or required
by a reviewer to understand the data. The Stylesheet should not overwrite information from the
XML and should not include hardcoded information that is not available in the underlying XML. The
Stylesheet is there to accurately display the XML data in a human readable format, anything that
reduces the accuracy of that display should not be updated.

The last point is that in define.xml v2.0 in particular the FDA may wish to print the file. There used to
be a statement in the FDA’s Study Data Technical Conformance Guide [1] to state that the define.xml
v2.0 was considered printable, however the wording on this was adjusted to:

“In addition to the define.xml, a printable define.pdf should be provided if the define.xml can not be
printed. To confirm that a define.xml is printable within the CDER IT environment, it is recommended
that the sponsor submit a test version to mailto:cder-edata@fda.hhs.gov prior to application
submission.”

If you adjust the Stylesheet presentation I would advise you to follow this guidance to ensure that
the define.xml will be suitable for submission without a corresponding define.pdf.

8

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

How to adjust the Stylesheet

If you are unfamiliar with the deifne.xml Stylesheet then to get started it is good to have a basic un-
derstanding of Hyper Text Markup Language (HTML). It is also helpful to know some Cascading Style
Sheet (CSS) and JavaScript too.
HTML being one of the building blocks for describing Web Pages there are many online and offline
resources for learning it. However some of the basics are noted below:

• Elements are the building blocks, each represented by a <Tag>.
• Tags usually come in pairs, <Tag> will open or start the Element and it will continue until
closed with a similar tag, but starting with a / such as </Tag>.
• Elements have properties called Attributes which contain data about the instance of the Ele-
ment and are added to the Start Tag. Each Attribute has its own Value.
• Elements can contain Content such as a text value or other Elements (Children).
• Elements without Content or Children can have / at the end of the Start Tag to show that the
 Element immediately closes and therefore no corresponding End Tag.

The general structure follows the below syntax:

 <tagname attribute=”value”>Content</tagname>
 <tagwithnocontent attribute=”value”/>

Some common HTML tags that are used within the XML Stylesheets include:

Comments are created by starting a tag with <!-- and ending with --> for example:
<!-- Comment text -->

<html> - Root tag for HTML <dl> - Description List
<head> - Metadata for file, e.g. Title <dt> - Defines term/name within a DL

<body> - Main part of document <dd> - Describes term/name within a DL

<div> - Divider or Section <table> - Defines HTML Table

<h1> to <h6> - Headings <caption> - Table caption

 - Group inline elements <tr> - Table row

<p> - Paragraph <th> - Table header cell

 - Unsorted List <td> - Table data cell

 - List Item <a> - Hyperlinks

9

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

Basic HTML tabs are not case sensitive but it is advised to use lowercase throughout, this is consis-
tent with more strict versions of HTML and XHTML.

Due to the HTML structure there are characters that cannot appear as values e.g. the less-than
symbol, <, could be confused for opening a new HTML tag. As such, some symbols are replaced
with HTML Entities, here are common ones:

XSLT code is similar to HTML with Elements, Tags, Attributes and Values. However, as XML is case
sensitive XSLT is too including any HTML tags that have been used. XSLT Tags are prefixed with xsl:
to easily identify these within the code.

XSLT can use Templates that can be defined once and then applied as needed. This separates the
code but also allows quick reusability. To maximize the potential reusability of Templates they can
have associated parameters which allow flexibility when using them.

Example of template definition:

<xsl:template name=”createHyperlink”>
 <xsl:param name=”href”/>
 <xsl:param name=”PageRefType”/>
 <xsl:param name=”PageRefs”/>
 <xsl:param name=”PageFirst”/>
 <xsl:param name=”PageLast”/>
 <xsl:param name=”title”/>
 ...
</xsl:template>

Here the <xsl:template creates a new template with the attribute name given the value
createHyperLink which is used to identify the template being created. The template contains 6
parameters, each created immediately after the <xsl:template start tag and each is a self-con-
tained tag with no content, i.e. there is no start/stop tag but a single <xsl:param tag, again here
the attribute name is given for each as the identifier.

Character Description Entity Name/HTML Code

< Less than <

> Greater than >

& Ampersand &

“ Double quotation mark "

‘ Apostrophe/Single quotation mark '

Non-breaking space

10

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

Example of using/calling a template:

<xsl:call-template name=”createHyperlink”>
 <xsl:with-param name=”href” select=”$href”/>
 <xsl:with-param name=”PageRefType” select=”$PageRefType”/>
 <xsl:with-param name=”PageRefs” select=”$PageRefs”/>
 <xsl:with-param name=”PageFirst” select=”$PageFirst”/>
 <xsl:with-param name=”PageLast” select=”$PageLast”/>
 <xsl:with-param name=”title” select=”$title”/>
</xsl:call-template>

Here the <xsl:call-template tag is used instead, the attribute name is used to link back to the previ-
ously created template. Values for each parameter are given after the <xsl:call-template start tag
using <xsl:with-param tags, again using the attribute name to link back and the select attribute
giving the value of the parameter to be passed as used within the template.

Some of the more common functionality that you may need to use, or see, in the XSLT involve se-
lecting values from the XML file. Some of the ways of using the values can be seen below:

• To select the Value of an Element you can use a <xsl:value-of> Tag:
 <xsl:value-of select=”./odm:Description/odm:TranslatedText”/>

• To select an Attribute of an Element, put @ before the Attribute name:
 <xsl:value-of select=”@Name”/>

• When more than one Element exists, you can loop over all Elements using:
 <xsl:for-each select=”def:DocumentRef”>

• Adding Text to the HTML output can be done using the <xsl:text> Tag:
 <xsl:text>Related dataset: </xsl:text>
 <xsl:value-of select=”odm:Description/odm:TranslatedText”/>

• Conditional selection can be done a number of ways, for example single selection using the
 <xsl:if> Tag
 <xsl:if test=”@def:CommentOID”/>
 <xsl:call-template name=”displayItemGroupComment”/>
 </xsl:if>

11

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

• Or Multiple selections using <xsl:choose> with <xsl:when> and <xsl:otherwise>
 <xsl:choose>
 <xsl:when test=”@Purpose=’Tabulation’ or @Purpose=’Analysis’”>
 <xsl:value-of select=”@Purpose”/>
 <xsl:when>
 <xsl:otherwise>
 <xsl:attribute name=”class”>error</xsl:attribute>
 <xsl:value-of select=”@Purpose”/>
 </xsl:otherwise>
 </xsl:choose>

• The select or test Attributes can also contain Functions, e.g.:
 <xsl:value-of select=”concat(./odm:Description/odm:TranslatedText,
 ‘ (‘, @Name, ‘)’)”/>

• To save certain data points for referencing later, XSL Variables can be created using a <xsl:-
variable> Tag, e.g.:
 <xsl:variable name=”leafIDs” select=”@leafID”/>

• These can then be referenced in other select or test criteria using $ before the Variable name as either
 a Value:
 <xsl:variable name=”leaf” select=”../../def:leaf[@ID=$leafIDs]”/>

• Or a Node/Location:
 <xsl:value-of select=”$leaf/def:title”/>

When updating the Stylesheet I use the various section comments to navigate quickly. In the define.
xml Stylesheet these are usually well used, but remember if you are adding your own sections or
drastically adjusting an existing one you should add or adjust the section comment.

An updates should always be done with the common principles of good programming practice kept
in mind. Not least, properly indenting code can help quickly and easily match related start/end tags
and sub-sections of code and its usefulness should never be underestimated. All changes should
be documented properly in the Header of the XSLT file and ensuring the version date and informa-
tion are adjusted accordingly. I also add an ID into the header for each update and add comments
next to all updates with an ID tag to link back to the Header, providing additional information when
needed, for example: <!-- WG-1, Additional OR X added to the test attribute -->.

12

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

Whenever testing or debugging updates, particularly if new to editing XSLT code then use com-
ments to back up a copy of the original code to quickly undo or reset sections, this can then also act
as a reference as you adjust. Alternatively you can just have a backed-up copy open at the same
section too.

If something really doesn’t appear to be working and you can’t figure out why, use temporary hard-
coded values to test, for example if you cannot see why a selection statement is not working, try
outputting a value “X1”, or “X2” etc. within each condition to find out which selection, if any, is firing.
Also just to make sure that the Stylesheet you are adjusting is saving and being used properly by
the XML. Add a hardcoded value at the start of the XSLT Stylesheet, somewhere easy to spot, and
refresh or open the XML file to make sure that the value has appeared.

One other note, particular for more recent versions of the define.xml Stylesheet, is that the tables
for SDTM and ADaM variable metadata are defined separately. This means that you may need to do
updates twice, or ensure you are working in the correct section, this is where the hardcoded values
mentioned earlier are particularly useful.

Simple Adjustment Examples

There are a number of situations where you may want to change the Stylesheet as noted previously,
either to show more, different, or a different view of the define.xml content. Below contains some of
the simpler adjustments that can make a large impact on the define.xml quality.

View more, or different, information

This example will show how to add the display format for SDTM float variables. By default, this is
only done for the ADaM variable metadata leaving a disconnect in the displayed metadata between
SDTM and ADaM variables, even if that variable is the same with identical attributes.

13

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

• Section:
 <!-- *** -->
 <!-- Template: ItemRefSDS (SDTM or SEND, [@Purpose!=’Analysis’]) -->
 <!-- *** -->

• Replace:
 <td class=”number”><xsl:value-of select=”$itemDef/@Length”/></td>

• With:
 <td class=”number”>
 <xsl:choose>
 <xsl:when test=”$itemDef/@def:DisplayFormat”>
 <xsl:value-of select=”$itemDef/@def:DisplayFormat”/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select=”$itemDef/@Length/>
 </xsl:otherwise>
 </xsl:choose>
 </td>

• Outcome:

This will decide if a @def:DisplyFormat exists for the variable, if it does then it will show that format.
If not, then it will default to just showing the length. If required this can be further expanded to check for
@SignificantDigits too and, if present, show a combination of @Length and @SignificantDigits.

Type Length

float 5
Type Length

float 5.1

14

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

Display “hidden” metadata

The most common issues I see with define.xml files are usually with attributes not readily shown by
the default Stylesheet. This includes attributes such as Mandatory, or Repeating. The below exam-
ple shows how to add such information into the visual define.xml via the Stylesheet.

• Section 1:
 <!-- *** -->
 <!-- Create the Data Definition Tables -->
 <!-- *** -->

• Add 1:
 <th scope=”col”>Repeating?</th>

• Section 2:
 <!-- ** -->
 <!-- Template: ItemGroupDefs -->
 <!-- ** -->

• Add 2:
 <td>
 <xsl:value-of select=”@Repeating”/>
 </td>

• Outcome:

The column can be added anywhere within the table, I chose to add between the Class and Struc-
ture columns as it semi-relates to both. However I must note that the relative position of the <th>
(table header) tag and the <td> (table data) tags within the associated <tr> (table row) tag should
be the same. Which data is represented under which heading is done through the column order, not
any kind of name or ID. If your column data look misplaced, check the ordering of the tags.

Dataset Description Class Repeating? Structure Purpose Keys Location

TA Trial Arms TRIAL DESIGN No One record per
planned Element
per Arm

Tabulation STUDYID,
ARMCD,
TAETORD

ta.xpt

TE Trial Elements TRIAL DESIGN No One record per
planned Element

Tabulation STUDYID,
ETCD

te.xpt

15

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

The same principles above can be used to add any XML metadata, simple or complex, as new col-
umns for datasets, variables, VLM, even CodeLists and Methods. For example, if you want to show
associated SAS Code for Methods where available in the define.xml metadata.

Adjust the look

A lot of the presentation can be adjusted not just within the XSLT and HTML tags, but other places
too. For example, if you wanted the Hyperlinks on the left hand side of the define.xml to be shown
using bullet points, that requires a very quick update to the associated JavaScript.

• Section:
 <!-- *** -->
 <!-- Generate JavaScript -->
 <!-- *** -->

• Replace:
 var ITEM = ‘\u00A0’;

• With:
 var ITEM = ‘\u25CF’;

• Outcome:

The default StyleSheet uses the UTF-8 character encoding and in this case has used unicode char-
acter U+00A0, which is a non-breaking space, for the bullet points for ITEMs in a list. This is repre-
sented using \00A0.
All we have done here is adjusted this to use the UTF-8 unicode character U+25CF, which is a “filled
circle”, #represented by \u25CF. You can use others if you prefer but the main point here being that
it can now be quicker to identify each unique line. This is particularly useful if long hyperlinks are
allowed to flow over multiple lines.

SDTM-IG 3.1.2

 Annotated Case Report Form
 Reviewers Guide
 Complex Algorithms
 Tabulation Datasets
 Trial Arms (TA)
 Trial Elements (TE)
 Trial Inclusion/Exclusion Criteria (TI)
 Trial Summary (TS)
 Trial Visits (TV)
 Demographics (DM)

SDTM-IG 3.1.2

• Annotated Case Report Form
• Reviewers Guide
• Complex Algorithms
 Tabulation Datasets
 • Trial Arms (TA)
 • Trial Elements (TE)
 • Trial Inclusion/Exclusion Criteria (TI
 • Trial Summary (TS)
 • Trial Visits (TV)
 • Demographics (DM)

16

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

Another example is to fix the hyperlink text for Supplemental Qualifiers. Eagle eyed readers may
have spotted that the hyperlink for the Related dataset footnote on SDTM datasets extends to the
end bracket.

• Section:
 <!-- ** -->
 <!-- Link to SUPPXX domain(s) -->
 <!-- For those domains with Suplemental Qualifiers -->
 <!-- ** -->

• Replace:
 <xsl:text> (</xsl:text>
 <a>
 <xsl:attribute name=”href”>#IG.<xsl:value-of select=“$dataset0ID/
 @0ID”/></xsl:attribute>
 <xsl:value-of select=“$suppDatasetName”/>)

• With:
 <xsl:text> (</xsl:text>
 <a>
 <xsl:attribute name=”href”>#IG.<xsl:value-of select=“$dataset0ID/
 @0ID”/></xsl:attribute>
 <xsl:value-of select=“$suppDatasetName”/>

 <xsl:text>)</xsl:text>

• Outcome:

 Related dataset: Supplemental Qualifiers for DM (SUPPDM)

 Related dataset: Supplemental Qualifiers for DM (SUPPDM)

Here the issue was that the end bracket was inside the HTML <a> tag, and so was being used
as part of the Hyperlink text. The solution was to move it outside of this tag. The addition of the
<xsl:text> tag around the end bracket ensure that no extra space is created between the hyper-
link text and the closing bracket.

17

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

More Complex Adjustment Examples

The following are some examples of more complex adjustments that can be made. Again, some of
these can improve the look or functionality of the define.xml but I would not consider most of these
requirements.

Add additional hyperlinks

In define.xml v1.0.0 the define-2.0.0.xls Stylesheet used hyperlinks to link variables and VLM to
associated methods. In define.xml v2.0.0 the default Stylesheets tend to instead place this informa-
tion in the Comments/Derivations column alongside the variable or VLM. This can mean the infor-
mation is more readily available in the place it is useful, but sometimes, particularly longer Methods
this can be a bit much.
Also, I have seen quite a large number of people moving from define.xml v1.0.0 to v2.0 immediately
request the hyperlinks to the methods to be added back in. To do this you can use:

• Section:
 <!-- *** -->
 <!-- ItemDef Method -->
 <!-- *** -->

• Replace:
 <div class=”linebreakcell”>
 <xsl:value-of select=”$MethodComment”/>
 </div>

18

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

• With:
 <div class=”linebreakcell”>
 <xsl:value-of select=”$MethodComment”/>
 <p class=”linebreakcell”>

 <xsl:value-of select=”$Method/@Name”/>

 </p>
 </div>

• Outcome:

The above uses the <p> HTML tag to create a new Paragraph, then <a> to hyperlink and
<xsl:value-of to select the name of the method being hyperlinked. I have added this in the
Complex section since as well as using multiple HTML tags and XSL selections, this adjustment can
then be further expanded, for example to conditionally show the Hyperlink to a method if the
method text is over X number of characters.

Showing Supplemental Qualifiers as Keys

With define.xml v2.0 it is quite easy to define a Supplemental Qualifier as a Key for the parent dataset
using Value Level Metadata (VLM). However, the default Stylesheet has no mechanism to make this
connection in the metadata and therefore show this connection. The following adjustment will allow
this:

• Section:
 <!-- ** -->
 <!-- Display Keys -->
 <!-- ** -->

Origin Derivation/Comment

Derived Concatenation of STUDYID and SUBJID
Origin Derivation/Comment

Derived Concatenation of STUDYID and SUBJID
Algorithm to derive USUBJID

19

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

• Replace:
 <xsl:template name=”displayKeys”>
 <xsl:variable name=”KeySequence” select=”odm:ItemRef/@KeySequence”/>
 <xsl:variable name=”n_keys” select=”count($KeySequence)”/>
 <xsl:for-each select=”odm:ItemRef”>
 <xsl:sort select=”@KeySequence” data-type=”number” order=”ascending”/>
 <xsl:if test=”@KeySequence[.!=’’]”>
 <xsl:variable name=”Item0ID” select=”Item0ID”/>
 <xsl:variable name=”Name” select=”$g_seqItemDefs[@0ID=$Item0ID]”/>
 <xsl:value-of select=”$Name/@Name”/>
 <xsl:if test=”@KeySequence < $n_keys”>, </xsl:if>
 </xsl:if>
 </xsl:for-each>
 </xsl:template>

• With:
 <xsl:template name=”displayKeys”>
 <xsl:variable name=”KeySequence” select=”odm:ItemRef/@KeySequence”/>
 <xsl:variable name=”datasetName” select=”@Domain”/>
 <!-- See if Supplemental Dataset has any Keys -->
 <xsl:variable name=”suppDatasetName” select=”concat(‘SUPP’,$datasetName)”/>
 <xsl:variable name=”v1msupp0ID” select=”..def:ValueListDef[@0ID=concat(‘VL.’,
 $suppDatasetName,’.QVAL’)]”/>
 <xsl:variable name=”n_keys”>
 <xsl:choose>
 <xsl:when test=”../odm:ItemGroupDef[@Name=$suppDatasetName]”>
 <xsl:variable name=”KeySequence2” select=”$v1msupp0ID/odm:ItemRef/
 @KeySequence”/>
 <xsl:value-of select=”count($KeySequence) + count($KeySequence2)”/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select=”count($KeySequence)”/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:variable>
 <xsl:for-each select=”odm:ItemRef|../def:ValueListDef[@0ID=concat(’VL.’,
 $suppDatasetName,’.QVAL’)]/odm:ItemRef”>
 <xsl:sort select=”@KeySequence” data-type=”number” order=”ascending”/>
 <xsl:if test=”@KeySequence[.!=’’]”>
 <xsl:variable name=”Item0ID” select=”@Item0ID”/>
 <xsl:variable name=”Name” select=”$g_seqItemDefs[@0ID=$Item0ID]”/>
 <xsl:if test=”starts-with(../@0ID,concat(‘VL.’,$suppDatasetName))”><xsl:
 value-of select=”$suppDatasetName”/>.</sxl:if>
 <xsl:value-of select=”$Name/@Name”/>
 <xsl:if test=”@KeySequence < $n_keys”>, <xsl:if>
 </xsl:if>
 </xsl:for-each>
 </xsl:template>

20

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

• Example XML Code showing VLM for Supplementary Qualifier being used a Domain Key:
 <def:ValueListDef 0ID=”VL.SUPPVS.QVAL”>
 <ItemRef Item0ID=”IT.SUPPVS.QVAL.REPNO” OrderNumber=”1” Mandatory=”No”
 Method0ID=”MT.REPNO” KeySequence=”5”>
 <def:WhereClauseRef WhereClause0ID=”WC.SUPPVS.QNAM.REPNO”/>
 </ItemRef>
 </def:ValueListDef>

...

 <ItemGroupDef 0ID=”IG.VS”>
 ...
 <ItemRef Item0ID=”IT.STUDYID” OrderNumber=”1” Mandatory=”Yes” KeySequence=”1”/>
 <ItemRef Item0ID=”IT.USUBJID” OrderNumber=”3” Mandatory=”Yes” KeySequence=”2”
 Method0ID=”MT.USUBJID”/>
 <ItemRef Item0ID=”IT.VS.VSTESTCD” OrderNumber=”5” Mandatory=”Yes”
 KeySequence=”3”/>
 <ItemRef Item0ID=”IT.VS.VSPOS” OrderNumber=”7” Mandatory=”No” KeySequence=”6”/>
 <ItemRef Item0ID=”IT.VS.VISITNUM” OrderNumber=”14” Mandatory=”No”
 KeySequence=”4”/>

• Outcome

As shown here, the SUPPVS.REPNO is now shown as one of the Key variables and in the correct
order within the sequence. The exact text here can be adjusted as needed to show QNAM.REPNO, or
QVAL where QNAM=
’REPNO’ or whatever is desired. It could also just be changed to REPNO, however I would advise
making this as obvious as possible that this variable is in the Supplementary rather than the parent
domain.

The above works by checking if a Supplementary dataset exists for the parent domain. If one does
exist then it will check if VLM is applied to the QVAL. If it is, it will include the VLMs in the list of
ItemRefs to check for the KeySequence attribute.

Optionally adding columns

In previous sections we’ve simply added columns. However, sometimes we may want to condition-
ally add, or hide, columns of information. A good example is Role for SDTM. Role is usually populated
for SDTM variables per the SDTM Implementation Guide (IG), however when it comes to the Supple-
mental Qualifiers, or indeed the RELREC dataset, the Role doesn’t really apply to each variable and
as such is not defined in the STDM IG. To hide this Not/Applicable for the RELREC dataset we can
query the Name attribute prior and only put the table header/data out where needed.

Keys

STUDYID, USUBJID, VSTESTCD,
VISITNUM, VSPOS

Keys

STUDYID, USUBJID, VSTESTCD,
VISITNUM, SUPPVS.REPNO , VSPOS

21

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

• Section:
 <!-- *** -->
 <!-- Template:ItemRefSDS (SDTM or SEND, [@Purpose!=’Analysis’]) -->
 <!-- *** -->

• Add:
 <!-- Do not show ROLE for RELREC dataset as it is Not Applicable -->
 <xsl:if test=”@Name!=’RELREC’”>
 <th:scope=”col”>Role</th>
 </xsl:if>

• Add:
 <!-- *** -->
 <!-- Role Column for ItemDefs -->
 <!-- *** -->
 <xsl:if test=”../@Name!=’RELREC’”>
 <td><xsl:value-of select=”@Role”/></td>
 </xsl:if>

• Outcome:
Trial Arms (TA) [Location: ta.xpt]

Note that the table for the TA Domain has the Role column present and populated

Related Records (RELREC) [Location: relrec.xpt]

However, the column is not on the RELREC table, which now more closely aligns with the SDTM IG.
All other columns are still present and correctly populated.

As previously noted, when adding, removing or conditionally showing columns ensure the correct
<th> (table header) and associated <td> (table data) are adjusted based on the relative position
within the <tr> (table row).

Variable Label Key Type Length Controlled Terms or Format Origin Role Derivation/Comment

STUDYID Study Identifier 1 text 7 Protocol Identifier

DOMAIN Domain Abbreviation text 2 [“TA”=”Trial Arms”]
<Domain Abbreviation (TA)>

Assigned Identifier

Variable Label Key Type Length Controlled
Terms or Format

Origin Role Derivation/Comment

STUDYID Study Identifier 1 text 7 Protocol Identifier

RDOMAIN Related Domain
Abbreviation

2 text 2 Assigned Identifier Domain Abbreviation from where data
originated.
Algorithm to derive RDOMAIN

22

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

Linking Supplemental Datasets with split Domains

The final complex update that I will use as an example is the case of linking Supplemental Qualifier
datasets with the parent Domain. The Stylesheet by default allows a simple combination, by Dataset
Name. The Supplemental Qualifier dataset associated with the QS Domain will be SUPPQS. Likewise
QSCS will be SUPPQSCS. However, there are some circumstances with the parent Domain is not re-
quired to split, but the Supplemental Qualifier dataset is above the FDA’s threshold, currently stand-
ing at 5 gigabytes (GB) in size.

More recent guidance has shown that for the purposes of the define.xml the datasets and domains
do not need to be shown as split, but studies created prior to this guidance or to a Sponsor’s own
business rule may still need these split shown in the define.xml.
So to make this update, do as follows:

• Section:
 <!-- *** -->
 <!-- Link to SUPPXX domain(s) -->
 <!-- For those domains with Suplemental Qualifiers -->
 <!-- *** -->

• Replace:
 <xsl:variable name=”datasetName” select=”@Name”/>
 <xsl:variable name=”suppDatasetName” select=”concat(‘SUPP’,$datasetName)”/>
 <xsl:if test=”../odm:ItemGroupDef[@Name=$suppDatasetName]”>
 <!-- create an extra row to the SUPPXX dataset when there is one -->
 <xsl:variable name=”dataset0ID” select=”../odm:ItemGroupDef[@Name=
 $suppDatasetName]”/>
 <tr>
 <td colspan=”8”>
 <xsl:text>Related dataset: </xsl:text>
 <xsl:value-of select=”../odm:ItemGroupDef[@Name=$suppDatasetName]/
 odm:Description/odm:TranslatedText”/>
 <xsl:text (</xsl:text>
 <a>
 <xsl:attribute name=”href”>#IG.<xsl:value-of select=”$dataset0ID/
 @0ID”/></xsl:attribute>
 <xsl:value-of select=”$suppDatasetName”/><xsl:text>)</xsl:
 text>
 </td>
 </tr>
 </xsl:if>

23

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

• With:
 <xsl:variable name=”datasetName” select=”@Name”/>
 <xsl:variable name=”domainName” select=”@Domain”/>
 <xsl:if test=”not(starts-with($datasetName, ’SUPP’,$domainName)”>
 <xsl:variable name=”suppDomainName” select=”concat(’SUPP’,$domainName)”/>
 <xsl:variable name=”suppDatasetName” select=”concat(’SUPP’,$datasetName)”/>
 <xsl:choose>
 <xsl:when test=”../odm:ItemGroupDef[@Name=$suppDatasetName]”>
 <!-- If a single related SUPP dataset exists (split or non-split) then
 create an extra row to the SUPPXX dataset -->
 <xsl:variable name=”dataset0ID” select=”../odm:ItemGroupDef[@Name=
 $suppDatasetName]”/>
 <tr>
 <td colspan=”9”>
 <xsl text>Related dataset:</xsl:text>
 <xsl:value-of select=”../odm:ItemGroupDef[@Name=$suppDatasetName]/
 odm:Description/odm:TranslatedText”/>
 <xsl:text (</xsl:text>
 <a>
 <xsl:attribute name=”href”>#IG.<xsl:value-of select=”$dataset0ID/
 @0ID”/></xsl:attribute>
 <xsl:value-of select=”$suppDatasetName”/>

 <xsl:text>)</xsl:text>
 </td>
 </tr>
 </xsl:when>
 <xsl:when test=”../odm:ItemGroupDef[@Name=$suppDomainName]”>
 <!-- Else if a single related non-split SUPP dataset exists for this
 Domain then create an extra row to the SUPPXX dataset -->
 <xsl:variable name=”dataset0ID” select=”../odm:ItemGroupDef[@Name=$supp
 DomainName]”/>
 <tr>
 <td colspan=”9”>
 <xsl text>Related dataset:</xsl:text>
 <xsl:value-of select=”../odm:ItemGroupDef[@Name=$suppDomainName]/
 odm:Description/odm:TranslatedText”/>
 <xsl:text (</xsl:text>
 <a>
 <xsl:attribute name=”href”>#IG.<xsl:value-of select=”$dataset0ID/
 @0ID”/></xsl:attribute>
 <xsl:value-of select=”$suppDomainName”/>

 <xsl:text>)</xsl:text>
 </td>
 </tr>
 </xsl:when>

24

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

• With (continued):
 <xsl:otherwise>
 <!-- Else if multiple related split SUPP datasets exist then create
 multiple extra rows to the SUPPXX datasets -->
 <xsl:for-each select=”../odm:ItemGroupDef”/>
 <xsl:if test=”starts-with(@Name, $suppDatasetName)”>
 <tr>
 <td colspan=”9”>
 <xsl:text>Related dataset:</xsl:text>
 <xsl:value-of select=”odm:Description/odm:TranslatedText”/>
 <xsl:text> (</xsl:text>
 <a>
 <xsl:attribute name=”href”>#IG.<xsl:value-of select=”@0ID”/></
 xsl:attribute>
 <xsl:value-of select=”@Name”/>

 <xsl:text>)</xsl:text>
 </td>
 </tr>
 </xsl:if>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:if>

• Outcome:
 Single Parent to Single SUPP will work as it did before, but with the addition of the following
scenarios:

 • Scenario #1 – Split Parent to Single SUPP:

 • Scenario #2 – Single Parent to Split SUPP:

ECG Test Results (EG1) [Location: eg.xpt]
Related dataset: Supplemental Qualifiers for EG (SUPPEG)

ECG Test Results (EG2) [Location: eg.xpt]

Related dataset: Supplemental Qualifiers for EG (SUPPEG)

Laboratory Test Results (LB) [Location: lb.xpt]

Related dataset: Supplemental Qualifiers for LB (SUPPLB1)
Related dataset: Supplemental Qualifiers for LB (SUPPLB2)

25

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

 • Scenario #3 – Split Parent to Split SUPP:

Note that this isn’t the whole battle – we have the Datasets now correctly linking to the associated
Supplemental Qualifier datasets under various conditions. However, there is a reverse hyperlink link
that also needs to be adjusted in a similar manner.

Conclusion

The define.xml is great for transferring machine-readable data across systems; however we are still
dependent on the human-readable version. The common misconception that Stylesheets cannot
be adjusted is false as shown perfectly within the Stylesheets themselves. There are some good
reasons for adjusting the Stylesheet and the guides and examples within this document should
help if this is something you need to do.
As long as a Stylesheet is amended properly, and with a designated purpose then Sponsors should
feel free to adjust the Stylesheet to improve the human readability of their define.xml, or even for
non-submission purposes, e.g. quality control, to ensure their metadata is correct. Any adjusted
Stylesheet intended to be used for submission should be checked before taking for granted that it
will be fine for the FDA to use.

References

FDA Study Technical Conformance Guide
https://www.fda.gov/downloads/ForIndustry/DataStandards/StudyDataStandards/UCM384744.pdf

CDISC define.xml specifications
https://www.cdisc.org/standards/data-exchange/define-xml

CDISC Wiki – Stylesheet library
https://wiki.cdisc.org/display/PUB/Stylesheet+Library

This article was written by a member of Quanticate’s Clinical Programming team. For further
information, please contact enquiries@quanticate.com or visit our website: www.quanticate.com.

Questionnaire-QSCS (QSCS) [Location: qscs.xpt]
Related dataset: Supplemental Qualifiers for QSCS (SUPPQSCS)

Questionnaire-QSMM (QSMM) [Location: qsmm.xpt]

Related dataset: Supplemental Qualifiers for QSMM (SUPPQSMM)

26

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

ABOUT QUANTICATE

Quanticate, headquartered in the UK and USA, is a leading global Clinical Research Organization
(CRO) primarily focused on the management, analysis, and reporting of data from clinical trials and
post-marketing surveillance. As The Clinical Data Experts, our team provides high quality, efficient
outsourcing solutions for companies who need additional capacity or who want to outsource certain
activities in their entirety.
Clinical and post-marketing services include scalable on-site and off-site clinical data management,
biostatistics, statistical programming, PK/PD analysis, medical writing, Pharmacovigilance, Data
Quality Oversight to enable centralized statistical monitoring, and statistical consultancy. Quanticate
was announced as a five category winner in the annual CRO Leadership Awards for Quality,
Reliability, Productivity, Regulatory, and Innovation. Quanticate was the first CRO to introduce the
Centralized Service Provision (CSP) approach to outsourcing supported by its data centralization
and visualization tool for both single-study and cross-study data analysis.

Please visit the Quanticate website at www.quanticate.com for further information and access to
more white papers.

27

 Successful Process Improvement using Validated SAS Macros in Clinical Trial Reporting

www.quanticate.com

STATISTICS • CLINICAL PROGRAMMING • MEDICAL WRITING • PHARMACOVIGILANCE • CLINICAL DATA MANAGEMENT • CONSULTANCY

